#### Lunar surface charging: a comparison of ARTEMIS data and particle-in-cell modeling

A. Poppe<sup>1,2</sup>, J. S. Halekas<sup>1,2</sup>, G. T. Delory<sup>1,2</sup> and W. Farrell<sup>2,3</sup>

<sup>1</sup>Space Sciences Lab., Univ. of California at Berkeley <sup>2</sup>Goddard Space Flight Center, NASA <sup>3</sup>NASA Lunar Science Institute





# Outline

- Lunar Surface Charging
- Lunar Prospector Measurements
- Simulation / Data Comparison
- ARTEMIS Measurements



# Plasma Environment at the Moon



## Lunar Plasma Environment





### Lunar Photoelectron Sheath





# Photoelectron Sheath Theory

- Previous theoretical work has analyzed photoelectron sheaths with kinetic theory [*Guernsey and Fu, 1970; Nitter et al., 1998*]
- Depending on the relevant parameters, the photoelectron potential distribution falls into three categories:
  - A: Non-monotonic sheath
  - B: Positive, monotonic sheath
  - C: Negative monotonic sheath
- In some cases, simultaneous solutions can exist for the same set of parameters





# Lunar Prospector Observations



## LP Observations





# LP ER Timeseries

- Lunar Prospector Electron Reflectometer
- Data taken during a terrestrial current sheet crossing
  - Energy spectrogram in 5 pitch angle bins
  - Sunlight / mag.
    Polarity flags
- Cold electron beam seen originating from the lunar surface





# LP ER Spectrogram



- Single observation at low solar zenith angle
  - Downgoing electrons: 90-180°
  - Upcoming electrons: 0-90°
  - Clear flux enhancement seen < 45° for energies ≈ 200-500 eV
- Energy dependent loss cone implies surface potential ~ -200 V, *in daylight!*



# Particle-in-cell Modeling and Data Comparison



# Particle-in-Cell Model

- Custom, electrostatic 1-dimensional PIC
  - Tailored to the lunar surface:
    - Photoelectrons emitted from left boundary
    - Plasma sheet electrons/ions enter at right boundary
    - Lunar surface charge density continuously calculated





### Electron Fluxes – Model v. Data



- Low-energy flux is reflected plasma sheet electrons (red)
- Narrow beam of photoelectrons accelerated away from surface (blue)
- Low-energy photoelectrons are trapped near surface (green)



# **ARTEMIS P1 Observation**



### **ARTEMIS Dayside Connection**





## **ARTEMIS Dayside Connection**

THB, 2011-07-16





## **ARTEMIS** Dayside Connection

THB, 2011-07-16





# Conclusion

- Observations of negative potentials on the dayside lunar surface seem to contradict pointwise charging theory
- PIC modeling of Lunar Prospector electron reflectometry results confirms non-monotonic potentials above the lunar surface
- ARTEMIS is already seeing several great examples of dayside charging – much more to explore!





#### Variability of Photoelectron Beams



Halekas et al., EPS, 2011



# ARTEMIS



- Two THEMIS probes re-directed to the Moon
  - Electrostatic Analyzer (ESA)
  - Solid State Telescopes (SST)
  - Fluxgate Magnetometer (FGM)
  - Search Coil Magnetometer (SCM)
  - Electric Field Instrument (EFI)



-500 V dayside potential in plasma sheet



September 14, 2011 ARTEMIS/THEMIS SWG

#### March 2010 Lunar Fly-by Measurements

# LADEE



- Investigate the lunar atmosphere and dust environment
  - Lunar Dust Experiment (LDEX)
  - Ultraviolet Spectrometer (UVS)
  - Neutral Mass Spectrometer (NMS)





