THEMIS multi-spacecraft observations of a 3D magnetic flux rope flanked by two active reconnection X-lines at the Earth’s magnetopause

Marit Øieroset (UC Berkeley)

Collaborators: Tai Phan, Jonathan Eastwood, Masaki Fujimoto, Bill Daughton, Mike Shay, Vassilis Angelopoulos, Forrest Mozer, Jim McFadden, Davin Larson, Karl-Heinz Glassmeier

This event reveals:

• A rare spacecraft encounter with an “active” flux rope flanked by two active X-lines

• 3D effects

• Super-thermal electron heating in the flux rope core

Outline

1. Theoretical predictions of reconnection-generated flux ropes: 2D versus 3D
2. THEMIS multi-spacecraft observations of an active 3D flux rope
Thin current sheets are prone to multiple X-lines

2D: magnetic islands are formed between X-lines

3D: magnetic islands become magnetic flux ropes
Basic properties of 2D magnetic islands (with a finite guide field)

- Strong core field
- Enhanced density in the core region of the island: \textit{2D effect?}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig.png}
\caption{Omidi and Sibeck (2007)}
\end{figure}
Electron energization in 2D islands

- 2D islands: electrons are trapped

- Electrons can be energized via:
 - Acceleration at X-line (e.g., Pritchett, 2006)
 - Island contraction (Drake et al., 2006)
 - Island coalescence (e.g., Pritchett, 2008; Oka et al., 2010, Tanaka et al., 2010)
In 3D the islands become flux ropes and particles are no longer trapped.

Flux ropes are not uniform in the 3rd dimension.

Formation, properties, and evolution much more complex.

It is not clear how processes seen in 2D simulations are modified by 3D effects.
Outline

1. Theoretical predictions of reconnection-generated flux ropes: 2D versus 3D

2. THEMIS multi-spacecraft observations of an active flux rope
 - Establish the flux rope encounter using multi-spacecraft (non-trivial)
 - 3D effects:
 - Density depletion in flux rope core
 - Electrons are not trapped
 - Super-thermal electron energization
THEMIS multiple magnetopause crossings: Reconnection jets

Guide field across the magnetopause = 0.3 of reconnecting field
Reconnection Jet Reversal: X-line or O-line Crossing?

With single spacecraft observations it is often difficult to distinguish between an X-line and an O-line.
THEMIS in 2010-2011: Z_{GSM} separation

Z separation = 1000-3000 km
= 10-30 ion skin depths

Coordinate System: GSE

THE

THD

THA

2010-04-10 00:00:00
All three spacecraft observed the flow reversal

→ Can determine conclusively whether this is an X-line or an O-line crossing

Flow reversal sequence:
If southward moving X-line: TH-D, TH-E, TH-A
If northward moving O-line: TH-A, TH-E, TH-D → this is a flux rope!
Spatial dimension of flux rope along Z (outflow direction):

15,000 km = 274 ion skin depths

Propagation speed of flow reversal: 21 km/s
(comparable to the external magnetosheath flow)
Flux rope consists roughly of an outer and an inner (core) region

Outer region: converging bi-directional jets

Core region: nearly stagnant and enhanced core field (B_Y)
Outline

1. Theoretical predictions of reconnection-generated flux ropes: 2D versus 3D

2. THEMIS multi-spacecraft observations of an active flux rope
 • Establish the flux rope encounter using multi-spacecraft (non-trivial)
 • 3D effects:
 - Density depletion in flux rope core
 - Electrons are not trapped
 • Super-thermal electron energization
Density variations in the flux rope

Outer region: The density is enhanced

Core: The density is reduced compared to outer region → 3D effect
Density depletion seen by all three spacecraft
→ a robust feature
Outline

1. Theoretical predictions of reconnection-generated flux ropes: 2D versus 3D

2. THEMIS multi-spacecraft observations of an active flux rope
 - Establish the flux rope encounter using multi-spacecraft (non-trivial)
 - 3D effects:
 - Density depletion in flux rope core
 - Electrons are not trapped
 - Super-thermal electron energization
Electrons are not trapped in the flux rope → 3D effect

| |B| (nT) | B (nT) | V (km/s) | \(N_P\) (cm s\(^{-3}\)) |
|---|---|---|---|---|
| 180° Electrons (eV) | 10000 | 1000 | 100 | 10 |
| 90° Electrons (eV) | 10000 | 1000 | 100 | 10 |
| 0° Electrons (eV) | 10000 | 1000 | 100 | 10 |

Electrons are unbalanced → flux rope is open-ended

[Diagram showing magnetic field lines and electron distribution]
Outline

1. Theoretical predictions of reconnection-generated flux ropes: 2D versus 3D

2. THEMIS multi-spacecraft observations of an active flux rope
 • Establish the flux rope encounter using multi-spacecraft (non-trivial)
 • 3D effects:
 - Density depletion in flux rope core
 - Electrons are not trapped
 • Super-thermal electron energization
Super-thermal electron energization

The super-thermal (1-4 keV) electron fluxes significantly enhanced in the core.

$T_{e\parallel}$ is enhanced in the outer region, but not in the core.
Summary

Three THEMIS spacecraft observed the passage of a 3D flux rope flanked by two active X-lines

3D effects:
• Density depletion
• Electrons not trapped

Particle heating and energization
• $T_i\perp$ is enhanced inside the flux rope core
• $T_e\parallel$ is enhanced in the outer region
• Super-thermal (1-4 keV) electrons likely energized somewhere along flux rope core
Open questions

Active versus non-active flux ropes:

Fact: The majority of flux ropes detected in space are not flanked by active X-lines [Zhang et al. 2011]

→ X-lines associated with flux ropes die quickly as they convect away

How does particle energization depend on the activeness of flux ropes?

2D versus 3D:

How does the fact that particles are not trapped affect the level of particle energization?