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March 8-11, 2008 magnetic storm including substorms and BBFs
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Dipolarization front observations Runov et al. (2009)

THEMIS studies (e.g., Runov et al., 2009, 2011)
showed that DFs couple active processes in the
midtail with similar activity in its near-Earth region

Multi-probe high-resolution observations showed that DFs
are microscopic structures (~1p,) that propagate over
macroscopic distance (~10Ry).
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Dipolarization front simulations and interpretations

Understanding of the DF mechanism may be a key to understanding of substorms.

It may also help better understand more fundamental plasma physics processes such as
magnetic reconnection.
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Dipolarization front simulations and interpretations

DFs are reproduced in MHD and hybrid

simulations of magnetic reconnection Merkin (2010)
(Fujimoto et al., 1996; Hesse et al., 1998;
Wiltberger et al., 2000; Nakamura et al., 20
2002; Krauss-Varban and Karimabadi, 2003; 8
Ashour-Abdalla et al., 2010; Birn et al., 2011) 1:
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DFs are largely not seen in PIC simulations

Unsteady reconnection with secondary

Few exceptions: DFs are observed in 2D equilibria

plasmoids (Daughton et al., 2006). Initial state:  with external driving field strongly localized in X

Perturbed 1D Harris equilibrium (GEM

Reconnection Challenge (Birn et al., 2001)
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Dipolarization front simulations and interpretations

DF formation can be alternatively explained in terms of the ballooning-
interchange instability (Zhu et al., 2009; Yang et al., 2011; Hu et al., 2011;
Pritchett and Coroniti, 2011) where reconnection appears as its
nonlinear consequence (bubble-blob pair formation)
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Dipolarization front simulations and interpretations

Can the DF formation be explained by the onset of spontaneous reconnection in the tail
(tearing instability)?

X-line separating conventional

X-line separating multiscale magnetotails
tearing-stable magnetotail equilibria

that may be potentially tearing-unstable
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Boundary conditions: Particles

Open boundaries are needed

e to allow the elongation and disruption of the electron diffusion region

e to avoid cutting the flux tube integral, which plays the key role in the tearing
stability
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Multiscale current sheet model

Machida et al. [2009]

(Sitnov and Schindler, 2010)
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Two different reconnection stories

Lembege-Pellat tails Multiscale tails

Normal magnetic field B, inside the current sheet
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Reconnection electric field Ey inside the current sheet
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Reconnection onset with Lembege-Pellat magnetotails

Electric field and energy dissipation
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Reconnection onset with multiscale magnetotails

Electric field and energy dissipation
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Metastable current sheet evolution: Multiscale tails

Slow phase Fast phase

Qt=9, 14, 19, 24 (e) Ot=24, 29, 34, 39

Ot=24, 29, 34, 39
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Metastable current sheet evolution: Lembege-Pellat tails

Slow phase Fast phase
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Transition from slow to fast phase: Is it caused by the ion tearing instability?

DF amplitude growth

Critical current sheet thickness
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Bubble-blob formation

(@) o025
o

Ve

0.3

0.1

0.0

-0.1

o I
w2
W

©
o

o
o

o
o

z/d
o
|||||||l|||||||
%
&

|
©
o

o

©
o

[
o

0 10



Catapult current sheet relaxation substorm scenario [Machida et al., 2009]

Poynting Flux Enhancement toward CPS

B-Field Bending
(ABz<0)

B-Field Accumulation
(ABz>0)

v
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Conclusion

e Spontaneous reconnection is possible in the magnetotail and it may be a
mechanism of substorms (consistent with the outside-in scenario)

* However the main distinctive feature of the magnetotail reconnection
onset is the formation of DFs rather than a change of magnetic topology
(consistent with one of the main ideas of the current disruption theory)

e New X-lines and their EDRs may form consistent with the bubble-blob
pair mechanism (before and after the formation of DFs)



