ARTEMIS Observations of Lunar Pickup Ions in the Terrestrial Magnetotail Lobes

A. R. Poppe1,2, R. Samad1, J. S. Halekas1,2, G. T. Delory1,2, W. Farrell2,3 and V. Angelopoulos4

1Space Sciences Lab., Univ. of California at Berkeley
2NASA Lunar Science Institute
3Goddard Space Flight Center, NASA
4IGPP/ESS, UCLA

March 23, 2012 – ARTEMIS/THEMIS SWG - UCLA
Previous Measurements by KAGUYA/SELENE Spacecraft

[Tanaka et al., GRL, 2009]
Pickup Ion Variables

<table>
<thead>
<tr>
<th>What We Know</th>
<th>What We Don’t Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch angle and gyrophase bunched</td>
<td>Ion mass</td>
</tr>
<tr>
<td>Centered at sub-solar point</td>
<td>Ion origin (surface or exospheric)</td>
</tr>
<tr>
<td>Magnetic field vector</td>
<td>Convection velocity</td>
</tr>
<tr>
<td>Continuous range of parallel energies up to ~75 eV</td>
<td>Sheath potential</td>
</tr>
<tr>
<td>Perhaps two discrete species</td>
<td></td>
</tr>
</tbody>
</table>
Maximum Perp. Ion Energy [eV] vs. Mass, Convection Speed
Convection Velocity

Halekas et al., 2011
Convection Velocity

[Diagram showing the convection velocity and high/low energy reflected photoelectrons around the moon.]
Summary and Future Work

• Observations of pick-up ions of lunar origin in the magnetotail lobes

• Centered at sub-solar point, possibly two discrete species

• Many pieces of information missing (convection velocity, ion mass), but working to constrain these as much as possible

• Use modeling to help understand pickup ion signatures

• Continuing to collect observations for statistics
 • 4-5 ARTEMIS dayside passes per spacecraft every tail crossing
 • Not every dayside pass in the tail lobes