

Substorm current system as viewed by simultaneous GOES, THEMIS and ground-based observations interpreted using new Substorm Current Wedge model.

A.V. Nikolaev, V.A. Sergeev, N.A. Tsyganenko (SPbU),

Токовый клин суббури (SCW) – модели, история.

Qu

Local Time

Имеет долгую историю:

- Birkeland 1903 предположил существование продольных токов;
- McPherron et. al. 1973 концептуальная модель.

Количественные модели:

- Horning et. al. 1974 модель использующая дипольные магнитные силовые линии, но не описывала м/рные эффекты;
- Vasyliev et. al. 1986 проволочная модель с реальными силовыми линиями; плохо параметризована, не предназначена для расчёта наземных возмущений.
- Tsyganenko 1997 модель построенная математическими методами. Трудно параметризовать и очень грубо оценивала наземную часть возмущений;
- Tsyganenko 2009 модель использующая реальные силовые линии с токами конечной толщины; пригодна для количественных расчётов как в ионосфере так и в магнитосфере (V.A. Sereev, JGR, 2011)

1 = 2 x 10⁶ A

R1 loop

Substorm Current Wedge component of magnetospheric model (Sergeev et al. JGR, 2011)

Spread-out wire-type model with realistic fieldline finite-thickness FACs – to accurately represent both magnetospheric and ionospheric observations

Input parameters for model : Iscw , Pw, Pe – SCW total current and longitudes (from ground magn. observations);

RT – distance to current disruption; **RCF** – field line stretching (T89) - (from spacecraft observations); current spread parameter

Z

Midlatitude Input for TW09 model.

UT

Н

Vaxis = 30nT

IRT 42.1 177.0

NVS 45.4 159.8

AMS -46.3 144. PAF -56.9 133.1 BOX

53.5 123.5 NUR 57.9 113.0

BFE 55.4 98. CLF 49.B 85.7 VAL 55.7 74.6 GUL

33.7 60.7 STJ 57.0

24.0 PST 41. 11.6 FRD

48.3 -6.5CNB -42.6 -133. MMB

35.5 -148. GNA

Dependence of ratio H_{obs}/H_{mod} at GOES (6.6 Re) (Sergeev et al, JGR, 2011)

on the stretching parameter (RCF)

on the substorm time

22 substorms

Goals of this study

<u>Confirm the additional R2-like loop</u> component of the Substorm Current Wedge and <u>identify its location</u> during substorm dipolarizations based on

coordinated observations of GOES и THEMIS spacecraft during substorm dipolarizations using :

✤ Radial conjunction of 5-6 SC;

Statistical relationship
between dipolarization
amplitudes at THEMIS (~11Re)
and GOES (6.6Re)

Radial conjunction 2009/04/08 ~08:50UT ~100nT AE substorm

Dipolarizations at radial pairs THEMIS-GOES (11-6.6Re)

Dependence of ratio H_{obs}/H_{mod} at GOES (6.6 Re) (Sergeev et al, JGR, 2011)

on the stretching parameter (RCF)

on the substorm time

22 substorms

Interpretation of R2 component of the SCW

Birn et al, 1999, 2011; Yang et al 2011:

R2-like currents are generated in the frontal part of the flow burst (reconnection exaust, bubble) when reaching the inner region with strong-B gradient ;

formed in addition to basic (**R1**) component arising at the edges of flow burst

Flow Burst Courtesy J.Yang RiceU -6 -3 -3 0 Y(Re) **Pressure distribution**

Work in progress...

Статистический анализ (2)

100

10

0.1

BZTHEMIS / BZGOES

lscw > 0.05 – 0.25 Mamp;

Iscw ~ 0.3-0.5 MAmp; **Iscw** > 0.5 Mamp; Возможная интерпретация: радиальное двжение границы не только в хвост, но и в BZo ~ 75 - 100 nT BZo ~ 55 - 75 nT направлении к Земле (флуктуации???) BZo ~ 30 - 55 nT BZo > 65 nT ^{,0000}000000 THEMIS GOES 1 - 2 1 + 2

Заключения

- Подтверждено существование дополнительного элемента системы токового клина (SCW) вблизи внутренней границы плазменного слоя (ПС).
- 2. Анализ амплитуд магнитных возмущений dBZTHEMIS / dBZGOES подтвердил существование тока с утра на вечер типа R2, который образуется:
 - За геостационарной орбитой Xgsm > -6.6Re в периоды слабо-возмущённых событий: Iscw > 0.05 – 0.25 Mamp, Bzo ~ 80-100 nT;
 - в районе геостационарной орбиты (Xgsm ~ 5.5-6.5 Re) в периоды средне-возмущённых событий: Iscw ~ 0.3-0.5 MAmp, Bzo ~ 55-70 nT;
 - на расстояниях Xgsm < -5.5Re в периоды сильно-возмущённых событий: Iscw > 0.5 Mamp, Bzo ~ 30-55 nT;

Анализ отдельного события 2009/04/08 показывает (подтверждает), что в периоды *слабых* возмущений (**BZo** ~ 80-100 nT, **Iscw** ~ 0.05 – 0.25 MAmp) экваториальная часть токового клина зоны 2 находится за геостационарной орбитой в районе **Xgsm** ~ 7 Re.

3. Существует систематическая зависимость dBZ_{THEMIS} / dBZ_{GOES} от времени взрывной фазы суббури, что в свою очередь может обуславливаться радиальным движением экваториальной части токового клина.

Зависимость H_{obs}/H_{mod} от конфигурации магнитных силовых линий

Модель токового клина суббури (TW09, Sergeev et al, JGR, 2011)

Модель каркасного типа с токами конечной толщины, текущими по реальным силовым линиям - пригодна для расчетов как в ионосфере, так и в магнитосфере

Входные параметры модели:

Рw, Ре – долготы продольных токов;

D :~ В^{-1/2} у Земли, но <2Rе на г 15Re.

ISCW – интенсивность.

RT - положение области разрушения тока; *требует* определения по спутниковым данным

RCF – контролирует вытянутость силовых линий в модели T89; *требует определения по спутниковым данным*

