NY METS World Series Effect on Human Lunar Missions?

METS win 1969, lose 1973

INTRODUCTION

Welcome to the focus group web site for Lunar Solar Origins Exploration (LunaSOX) as an affiliated service of the Virtual Heliospheric Observatory. 
LunaSOX Data Browser Sample Output
Apollo ALSEP 12 & 15 Frequency Distributions: Speed & Density

Average and median speeds lower at Apollo 12 ALSEP site
→ Correlates to higher crustal magnetic field & SW ion deflection

Also supporting Explorer 35, Artemis P1-P2 field & plasma data
Coming: Lunar Prospector Electron and other PDS data sets
Lunar Impact Parameters for Radial Solar Wind Flow

This interface provides access to hourly resolution "impact parameters" for pairs of Moon and IMP 8, Wind, ACE Geotail and Earth. These are the distances by which a plasma element moving radially away from the sun with a speed of 390 km/s, observed at an upstream spacecraft would miss intercepting a downstream spacecraft (or Earth), allowing for the 30 km/s motion of the Earth and its nearby spacecraft about the sun.

Object Ephemeris Dates
Moon 1969-01-01 - 2009-12-31
Earth 1969-01-01 - 2009-12-31
IMP-8 1974-01-01 - 2006-12-31
WIND 1995-01-01 - 2009-12-31
ACE 1998-01-01 - 2009-12-31
Geotail 1995-08-09 - 2006-12-31
LunaSOX leverages collaboration with SPDF on infrastructure for enhanced access & analysis of instrument and ephemeris data.
Effects of $Na^+$ and $He^+$ pickup ions on the lunar plasma environment:

3D hybrid modeling

Alexander S. Lipatov$^a,b$, John F. Cooper$^b$, Edward C. Sittler, Jr.$^b$, Richard E. Hartle$^b$, Menelaos Sarantes$^a,b$

alexander.lipatov-1@nasa.gov; john.f.cooper@nasa.gov

$^a$ GPHI UMBC; $^b$ NASA GSFC, Greenbelt, MD 20771, USA

Fall AGU, San Francisco, CA, Dec. 5-9, 2011
2-D cuts of the background $H^+$ ion density (top) and magnetic field $B_x$ (bottom)
2-D cuts of the pickup ion $N\alpha^+$ (top) and $He^+$ (bottom) density profile